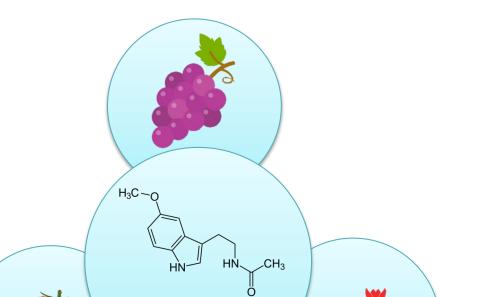


Effect of phytomelatonin-rich diets on oxidative damage in ram sperm

S. Miguel-Jiménez¹, M. Carvajal-Serna¹, V. Peña-Delgado¹, A. Casao¹, R. Pérez-Pe¹


¹ Grupo BIOFITER-Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Zaragoza, Spain BISFITER

BIOLOGÍA, FISIOLOGÍA Y Tecnologías de la reproducción

Saramiguel@unizar.es

Background:

- Melatonin regulates reproductive seasonality in sheep. Sometimes, synthetic melatonin is used in subcutaneous implants to modulate reproductive seasonality in rams
- Phytomelatonin is the endogenously-produced melatonin in plants. It could be found in some vegetable by-products from food industries.

Phytomelatonir

It would be a green alternative and within the context of circular economy, to replace the synthetic melatonin with a natural phytomelatonin, by supplementing the diet with vegetable by-products from the food industry.

Aim:

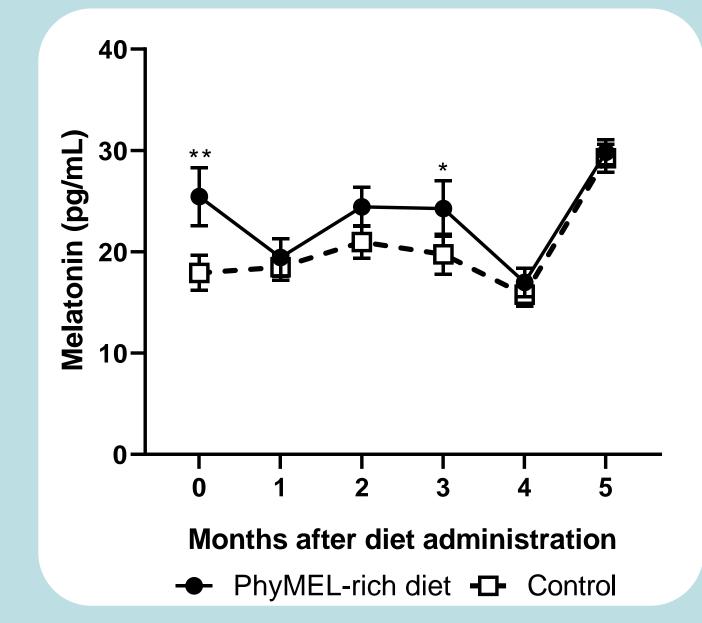
To evaluate the effect of phytomelatonin-rich diets on ram sperm quality and seminal plasma composition.

Methods:

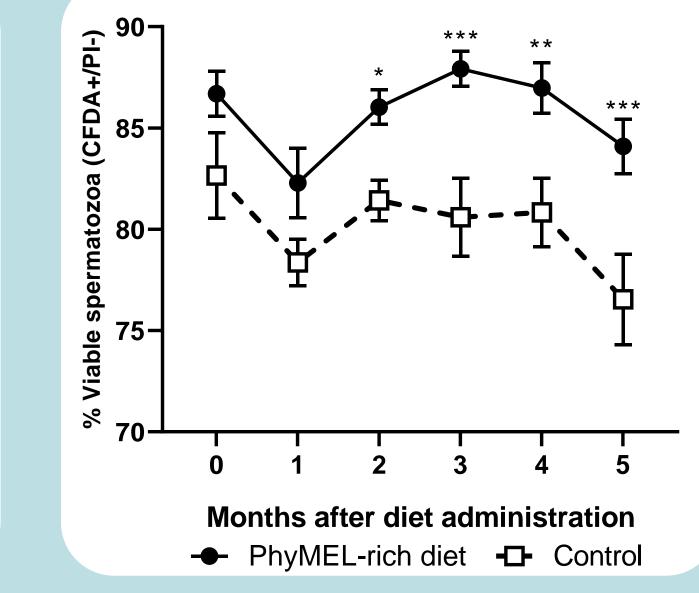
Experimental design	Blood plasma and semen collection	Sperm quality analysis	Enzyme activities and melatonin analysis
 9 rams fed with a commercial feed (control) 	Blood plasma extraction 15' 600xg 25°C		
 9 rams fed with a phytomelatonin-rich diet (PhyMEL-rich diet) consisting of: 	Just before and once a month during the		
Commercial feed 80 %	experiment	Sperm motility (ISAS [®])	
Mixture of vegetable by-products from food industries: • Pomegranate pulp • Tomato pulp	Seminal plasma extraction (10' 20000xg 4°C) x2		Antioxidant enzymes activities (CAT, SOD, GRD, GPx in blood and seminal plasma) assessed with spectrophotometric assays.
			Malatanin concentration in cominal

Storage at 37°C until use

plasma measured using a commercial competitive immunoassay (Direct saliva melatonin ELISA kit)


Grape pomace

5 months (March-July)


Just before and twice a month during the experiment

Sperm viability, ROS levels, PS translocation (Flow cytometry)

Results:

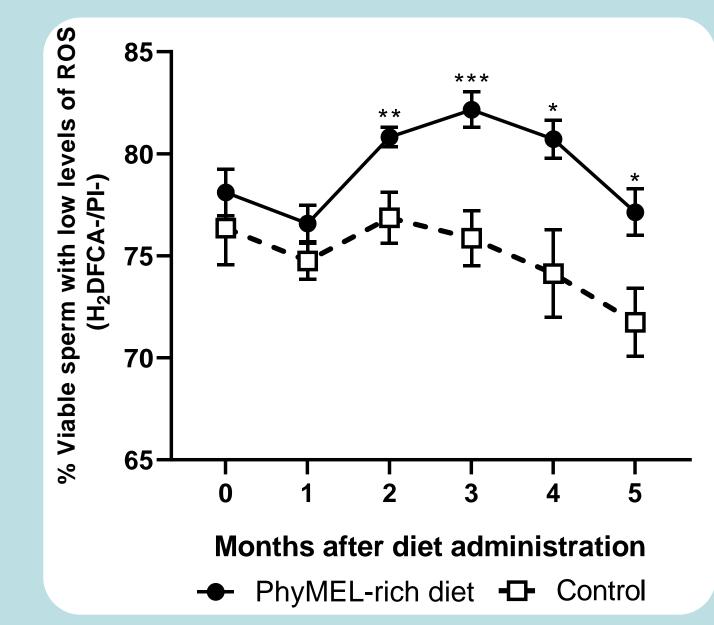


Figure 1: Monthly variations of melatonin levels in seminal plasma of animals fed with the phytomelatonin-rich diet (PhyMEL-rich diet, •) and animals fed with a commercial diet (control, \Box) from month 0 (before diet administration) to month 5 (after diet administration). Values are shown as mean ± S.E.M., n=16, and *P<0.05; **P<0.01, indicate significant differences between the two experimental groups.

20 %

Figure 2: Percentage of viable sperm cells in samples from animals fed with the phytomelatonin-rich diet (PhyMEL-rich diet, •) and animals fed with a commercial diet (control, \Box) from month 0 (before diet administration) to month 5 (after diet administration). Values are shown as mean ± S.E.M., n=16. *P<0.05; **P<0.01; ***P<0.001, indicate significant differences between the two experimental groups.

Figure 3: Percentage of viable with low levels of ROS sperm cells in samples from animals fed with the phytomelatonin-rich diet (PhyMEL-rich diet, •) and animals fed with a commercial diet (control, \Box) from month 0 (before diet administration) to month 5 (after diet administration). Values are shown as mean ± S.E.M., n=16. *P<0.05; **P<0.01; ***P<0.001, indicate significant differences between the two experimental groups.

		Blood plasma				
		CAT	GPx	GRD	SOD	
Month		(nmol/min∙mL)	(nmol/min∙mL)	(nmol/min·mL)	(nmol/min∙mL)	
0	Diet	17.859 ± 5.074	0.010 ± 0.002	0.018 ± 0.002	4.938 ± 0.673	
0	Control	24.168 ± 4.998	0.017 ± 0.002	0.011 ± 0.001	4.745 ± 0.709	
1	Diet	23.740 ± 4.859	0.012 ± 0.001	0.020 ± 0.003	5.761 ± 1.396	
1	Control	16.892 ± 2.350	0.014 ± 0.000	0.029 ± 0.002	6.687 ± 0.507	
2	Diet	27.429 ± 4.493	0.013 ± 0.001	0.031 ± 0.005	6.481 ± 0756	
L	Control	16.700 ± 3.468	0.010 ± 0.001	0.044 ± 0.006	6.687 ± 1.021	
3	Diet	22.614 ± 3.335	0.012 ± 0.002	0.063 ± 0.009	6.713 ± 0.518	
3	Control	35.729 ± 6.972	0.022 ± 0.006	0.056 ± 0.003	7.755 ± 1.332	
4	Diet	32.928 ± 8.257	0.033 ± 0.004	0.023 ± 0.004	6.250 ± 0.672	
4	Control	28.935 ± 4.824	0.026 ± 0.001	0.019 ± 0.001	4.762 ± 0.67	
5	Diet	16.903 ± 1.654	0.022 ± 0.004	0.017 ± 0.003	5.556 ± 0.495	
5	Control	16.789 ± 3.396	0.018 ± 0.002	0.020 ± 0.005	5.671 ± 0.688	
		Seminal plasma				
		CAT	GPx		GRD	
Month		(nmol/min∙mL)	(nmol/min∙mL)	(n	ımol/min∙mL)	
0	Diet	11.752 ± 1.994	0.016 ± 0.002	(0.022 ± 0.002	
	Control	15.306 ± 2.572	0.017 ± 0.003	(0.028 ± 0.002	
1	Diet	12.528 ± 1.931	0.014 ± 0.002	2 (0.025 ± 0.002	
	Control	20.603 ± 3.455	0.015 ± 0.002	(0.021 ± 0.002	
2	Diet	15.197 ± 3.753	0.012 ± 0.002	(0.024 ± 0.004	
	Control	8.547 ± 1.497	0.013 ± 0.002	(0.021 ± 0.002	
3	Diet	12.747 ± 1.764	0.022 ± 0.001	(0.025 ± 0.002	
	Control	12.652 ± 2.581	0.022 ± 0.002	(0.029 ± 0.002	
4	Diet	25.418 ± 3.218	0.024 ± 0.002	(0.028 ± 0.003	
	Control	24.190 ± 3.854	0.019 ± 0.003	(0.033 ± 0.002	
5	Diet	23.250 ± 3.768	0.018 ± 0.001	(0.020 ± 0.003	
	Control	19.939 ± 2.847	0.017 ± 0.002	(0.025 ± 0.002	

Table 1: Monthly variations of antioxidant enzyme activities in blood plasma and seminal plasma of animals fed with a phytomelatonin-rich diet (Diet) and animals fed with a commercial diet (Control) from month 0 (before diet administration) to month 5 (after diet administration). Values are shown as mean ± S.E.M., n=16.

Conclusions:

Phytomelatonin-rich diet increases ram sperm viability and decreases intracellular ROS levels.

It would exert this effect directly, not through the modulation of antioxidant enzyme activity.

Grants: AGL-2017-83799-R, DGA-A07_20R, PID2020-113239RB-100. S. Miguel-Jiménez and V. Peña-Delgado have a grant from the Aragón Government.